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ABSTRACT. Although considerable attention has
been paid to the record of temperature change over
the last few centuries, the range and rate of change
of atmospheric circulation and hydrology remain
elusive. Here, eight latitudinally well-distributed
(pole–equator–pole), highly resolved (annual to
decadal) climate proxy records are presented that
demonstrate major changes in these variables over
the last 2000 years. A comparison between atmos-
pheric 14C and these changes in climate demon-
strates a first-order relationship between a variable
Sun and climate. The relationship is seen on a glo-
bal scale.

Introduction
A key aspect of the debate about future climate
change is centred on the magnitude, frequency and
causes of natural climate variability. Recent work
highlights the importance of major changes in near-
surface temperature such as those of the Little Ice
Age (LIA) and the Medieval Warm Period
(MWP) relative to the warming of the past century
(Mann et al. 1999; Esper et al. 2002). In general,
the LIA is characterized by a widespread cooling
on the order of 0.5–1.0°C and a lowering of the
equilibrium line altitude (ELA) of mountain gla-
ciers around the world of about 100 m (e.g. Broeck-
er 2001). The MWP preceded the LIA and was
characterized by temperatures that were slightly
higher than present-day conditions in many parts of
the world. There are no universally accepted, pre-
cise definitions for the duration of the LIA or the

MWP. In this paper, we consider the MWP to cover
the period from roughly AD 800 to AD 1200. The
MWP–LIA transition culminated at around AD
1400 ± 40, superimposed upon a pattern that began
as early as AD 1220 ± 40. In terms of temperature
and glacier fluctuations, the LIA has at least two
phases and may or may not be over.

The best measure of climate is not necessarily
temperature. The magnitude and cause of changes
in other climate parameters are explored in this pa-
per. In particular, we concentrate on hydrologic and
atmospheric circulation changes occurring over the
last 2000 years. Changes in these parameters are
important because they are involved in more than
half of Earth’s poleward heat transport (Peixoto
and Oort 1992). Previous work in Greenland has
demonstrated that the onset of the LIA was the most
dramatic polar circulation reorganization of the last
7000 years (O’Brien et al. 1995). Tropical droughts
during the LIA were among the most severe of the
Holocene (Haug et al. 2001). Perhaps most impor-
tant, changes in climate over the last 2000 years
have been associated with major disruptions in civ-
ilization (Buckland et al. 1996; Fagan 2000; Gill
2000).

We use records that span the last two millennia,
a time period represented by well-dated high-reso-
lution records with the best possibility of determin-
ing and understanding climate variability on time-
scales and magnitudes of relevance to modern so-
ciety. The range and rate of change of climate var-
iability exceed those observed in the instrumental
record, giving a better perspective on potential fu-
ture climate extremes.
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Global distribution of climate variability
To illustrate the global nature of major climate
events during the last 2000 years, we present eight
well-dated high-resolution records that share sim-
ilar centennial-scale signatures (Figs 1 and 2). We
recognize that not all published records contain this
signature (e.g. Cook et al. 1991), but the broad ge-
ographic distribution (pole–equator–pole) of
records presented here indicates that they are in-
deed global, corroborating previous work (e.g.
Denton and Karlén 1973; Grove 1988; O’Brien et
al. 1995). The clearest of these signatures is the
LIA, which follows the MWP, as described above.

The LIA–MWP transition is one of several
global-scale rapid climate change (RCC) events
to have occurred in the Holocene (Mayewski et al.
2004). As shown in Mayewski et al. (2004) this
RCC was not merely a temperature change, but was
also a time of rapid atmospheric circulation and hy-
drologic change across the planet. In Fig. 1 blue,
green, and orange dots mark locations where shifts
toward cooler, wetter, and drier conditions oc-
curred at the LIA–MWP transition (see Mayewski
et al. (2004) and references therein).

Atmospheric circulation and hydrology
Ice core chemistry has a quantitatively strong rela-
tionship to atmospheric circulation. Changes in the

position and strength of semi-permanent high and
low pressure centres impact the delivery of chem-
ical species from their source region to the ice that
ends up in a glacier. Calibrating the relationship be-
tween present-day meteorological measurements
of pressure and wind fields with the chemical sig-
nals measured in ice cores allows past ice chemistry
to be used as a proxy for atmospheric circulation at
earlier times. Previous work on the GISP2 ice core
shows that high K+ concentrations (Fig. 2a) are co-
incident with intensification of the Siberian High,
and that high Na+ concentrations (not shown) rep-
resent a deeper Icelandic Low (Mayewski et al.
1997, Meeker and Mayewski 2002). In the high lat-
itude southern hemisphere, Kreutz et al. (1997)
demonstrated that higher Na+ concentrations in the
Siple Dome ice core (Fig. 2h) coincide with higher
levels of cyclone intensity in one of the major qua-
si-stationary lows in the circumpolar trough, the
Amundsen Sea Low.

The levels of certain trace elements measured in
some marine cores can be used to infer past chang-
es in river discharge, and are related to the variabil-
ity of precipitation. In a core from ODP Site 1002,
in the Cariaco basin, the %Ti (Fig. 2c) and %Fe (not
shown) have been interpreted as a proxy for the
amount of Inter Tropical Convergence Zone
(ITCZ) precipitation over northern South America
(Haug et al. 2001). Using a marine core from near
the coast of mid-latitude Chile, Lamy et al. (2001)

Fig. 1. Map showing locations of palaeoclimate records used in this study are shown with red dots. Blue, green, and orange dots denote
locations where a shift toward cooler, wetter, and drier conditions occurred at the Little Ice Age–Medieval Warm Period transition as
described in Mayewski et al. (2004)
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Fig. 2. Eight palaeoclimate records from locations corresponding to red dots in Fig. 1 arranged by latitude
from north to south. (a) GISP2 K+, (b) Punta Laguna 18O, (c) Cariaco Basin percentage titanium, (d) Lake
Naivasha level, (e) Lake Victoria percentage shallow water diatoms, (f) Makapansgat speleothem 13C, (g)
Core GeoB 3313–1 iron intensity, (h) Siple Dome Na+
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have shown a link between the iron content of sed-
iment (Fig. 2g) and precipitation, which in turn is
related to changes in the position of the southern
hemisphere westerlies. Increased input of iron-
poor material (low Fe intensity) coincides with a
higher amount of rainfall.

Oxygen and carbon isotope fractionations are
related to precipitation. The oxygen isotope (δ18O)
record from Punta Laguna (Fig. 2b) has been inter-
preted as a proxy for changes in precipitation in the
Yucatan (Hodell et al. 2001). Carbon isotopes
(δ13C) measured in a speleothem from Cold Air
Cave, Makapansgat, South Africa (Fig. 2f) were
used to infer the extent of grasslands in southern
Africa (Holmgren et al. 1999) that is in turn related
to rainfall.

In equatorial Africa lake levels have been used as
an indicator of changes in precipitation minus
evaporation. Past levels in Lake Naivasha deter-
mined by Verschuren et al. (2000) are shown in Fig.
2d. Changes in the level of Lake Victoria based on
the percentage of shallow water diatoms (Stager,
this study) are shown in Fig. 2e.

External forcing
The time series of potentially important climatic
forcing factors are shown in Fig. 3. Incoming short-
wave radiation from the Sun is the dominant source
of energy on Earth and a primary candidate for in-
troducing variability in the climate system. Global-
ly averaged outgoing long-wave radiation must ul-
timately balance the incoming radiation. However,
on its return to space a portion of this radiation is
temporarily trapped by greenhouse gases, thus
warming the lower troposphere. The amount of aer-
osols in the atmosphere also alters the energy bal-
ance, in some cases leading to near-surface cool-
ing. Proxies for solar variability, astronomical cal-
culations for changes in the seasonal and geograph-
ical distribution of incoming radiation, measure-
ments of past levels of greenhouse gases, and a
proxy for volcanic aerosols are presented in Fig. 3.

Cosmogenic nuclides such as 10Be and 14C, pro-
duced by the interaction of cosmic ray particles
with the atmosphere, can be used to provide long-
term records of the intensity of the cosmic ray flux
and its modulation by solar activity. Atmospheric
14C is incorporated along with the other stable iso-
topes of carbon into biological organisms, includ-
ing trees. Some of the 10Be is removed from the at-
mosphere by snow and incorporated into ice sheets
and glaciers. These proxies for solar variability,

Δ14C measured in tree rings (Stuiver et al. 1998),
and 10Be measured in ice from Greenland (Yiou et
al. 1997) and the South Pole (Bard et al. 2000) are
shown in Fig. 3a. Low production rates of cos-
mogenic nuclides correspond with increased solar
output. Calibration of the measured 10Be to total ir-
radiance (Bard et al. 2000) shows that variations on
the order of about 5 W/m2 occur on multi-decadal
to centennial time scales.

Variations in the geometry of Earth’s orbit (ec-
centricity, obliquity, and precession of the equinox-
es) lead to changes in the distribution of insolation
(Berger 1978a, b) as a function of latitude and sea-
son (Fig. 3b). Eccentricity is the only factor that
causes a net change in the globally averaged
amount of energy received by Earth over an entire
annual cycle. These variations are on the order of
0.1% on a time scale of c. 100000 years. Variations
in obliquity and precession lead to changes of the
spatial and seasonal patterns of incoming solar ra-
diation on the order of 10% on time scales of c.
19000–41000 years. Obliquity variations redis-
tribute incoming radiation symmetrically about the
equator, while the precession changes result in an
asymmetric redistribution out of phase between
hemispheres. Changes in summer and winter inso-
lation over the past 2000 years are smooth, unidi-
rectional, and small (Fig. 3b).

The concentration of greenhouse gases in
Earth’s atmosphere have varied on time scales
ranging from millions of years to seasons. The
record of CO2 and CH4 for the last 2000 years is
shown in Fig. 3c. Carbon dioxide from 1958 to
2000 comes from continuous measurements made
at Mauna Loa, Hawaii (Keeling and Whorf 2004).
Methane measurements from 1979 to 1992 are
from Cape Meares, Oregon (Khalil et al. 1993). Es-
timates of the levels of atmospheric greenhouse
gases prior to this come from measurements made
on air bubbles trapped in glacial ice from Antarc-
tica (Neftel et al. 1985; Friedli et al. 1986; Eth-
eridge et al. 1998a, b; Indermühle et al. 1999;
Flückiger et al. 2002). The increase in greenhouse
gas concentration over the last one to two centuries
is clearly due to human activities including the
burning of fossil fuels, deforestation, and cement
production (Intergovernmental Panel on Climate
Change 2001). These increases mirror the expo-
nential rise of human population (United Nations
1999; US Bureau of the Census 2004) also shown
in Fig. 3c.

Large volcanic eruptions inject significant
amounts of sulphate into the atmosphere. When
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Fig. 3. Climate forcing functions. (a) Proxies for solar variability including 14C measured in tree rings (red), 10Be
measured in ice from Greenland (green) and South Pole (blue). (b) Summer and winter insolation at latitudes 60°N,
20°N, equator, 20°S, and 60°S. (c) Greenhouse gas concentration, atmospheric CO2 (light blue) and CH4 (green) along
with human population (pink). (d) SO4 residuals (volcanic aerosols) measured in ice from Greenland
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Fig. 4. Comparison of proxy records for changes in atmospheric circulation and the hydrologic cycle with the 14C proxy
for solar variability.
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this sulphate gets into the stratosphere it is trans-
ported long distances, and has the potential to im-
pact climate for several years. Large spikes of SO4
that stand well above tropospheric background lev-
els (SO4 residuals) serve as a proxy for volcanic
aerosols. The SO4 residuals measured in ice from
GISP2 in Greenland (Zielinski et al. 1996) are
shown in Fig. 3d.

Insolation changes due to Earth’s orbital geom-
etry, and variations of greenhouse gases (CO2,
CH4), and human population growth show little re-
semblance to the response records shown in Fig. 2.
Forcing due to Earth’s orbital changes is too slow
and not even of the same sign in the northern and
southern hemispheres. Greenhouse gases have in-
creased exponentially with sharp increases from
1850 onwards with the exception of a 10 ppmv drop
in CO2 within the LIA (Etheridge et al. 1998b). Ep-
isodic volcanic aerosol forcing likewise shows lit-
tle resemblance to the multi-decadal scale variabil-
ity shown in Fig. 2.

Previous work has suggested a connection be-
tween solar variability and individual climate
records (e.g. Suess 1970; Denton and Karlén 1973;
Eddy 1976; Stuiver and Braziunas 1993; Jirikowic
and Damon 1994; Lean et al. 1995; O’Brien et al.
1995; Mayewski et al. 1997; Beer 2000; van Geel
et al. 2000; Bond et al. 2001). Below we show that
global climate change correlates with solar varia-
bility by comparing the eight pole–equator–pole
distributed records shown in Fig. 2 with atmospher-
ic 14C residuals (Δ14C), a proxy for variability of so-
lar output (Stuiver et al. 1998; Beer 2000), to eval-
uate the likelihood of a solar–climate association.

Solar–climate connection
A connection between solar variability and climate
change has previously been noted in many individ-
ual records, including two used in this study (Ver-
schuren et al. 2000; Hodell et al. 2001). Here we il-
lustrate that such a connection is of global propor-
tions by comparing eight records arrayed in lati-
tudes extending from the Arctic to the Antarctic.
Fig. 4 shows the comparison between each of the
eight records shown in Fig. 2 and the Δ14C record
from Fig. 3. In order to clearly see the multi-dec-
adal to centennial variability, each record has been
smoothed by removing periodicities less than 30
years. This comparison reveals a transition in at-
mospheric circulation and hydrology at around AD
1400 ± 40 along with an increase in the Δ14C (rep-
resenting a decrease in solar output). During the

LIA there is a remarkable coherence between fluc-
tuations in the Δ14C series and both atmospheric
circulation and hydrology. Reduced solar output
thus coincides with changes in climate on a global
scale

The most prominent RCC of the late Holocene
(LIA–MWP transition; Mayewski et al. 2004) can
be traced at various latitudes. Changes at this tran-
sition include intensified polar atmospheric circu-
lation in both hemispheres (Mayewski et al. 1993,
1997; O’Brien et al. 1995; Kreutz et al. 1997), in-
creased tropical humidity in Yucatan (Hodell et al.
2001) as well as in tropical Africa at Lake Victoria
(this study), and Lake Naivasha (Verschuren et al.
2000), an expansion of grasslands in southern Af-
rica (Holmgren et al. 1999), reduced ITCZ precip-
itation over northern South America (Haug et al.
2001), and increased precipitation in mid-latitude
Chile (Lamy et al. 2001). These Sun–climate rela-
tionships are most clearly seen during the LIA. In
the earlier part of the record the solar–climate as-
sociation also reveals some similarities, but the re-
lationship is not straightforward.

Conclusions
The proxy climate and Δ14C records presented in
this study show a good match with minor excep-
tions. In summary, six out of these eight records to
a large extent match the signal structure and timing
of Δ14C variability. The Cariaco basin and South
African speleothem records match the structure,
but have some small age-offsets. The global distri-
bution of the LIA and MWP and the agreement be-
tween climate proxy records and the Δ14C series
over the last 2000 years indicate a strong associa-
tion between solar variability and globally distrib-
uted climate change. This shows that change in the
output of the Sun has significant impacts on cli-
mate. Additional study is needed to investigate the
higher frequency changes seen in palaeoclimate
records because of the societal relevance of climate
change on these time scales.
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