Research Reports in Belizean Archaeology Volume 10

Archaeological Investigations in the Eastern Maya Lowlands: Papers of the 2012 Belize Archaeology Symposium

Edited by John Morris, Jaime Awe, George Thompson and Melissa Badillo

Institute of Archaeology
National Institute of Culture and History
Belmopan, Belize
2013
DECIPHERING A TERMINAL CLASSIC SURFACE ARTIFACT
DEPOSIT AT COURTYARD 100, LA MILPA: THE VIEW FROM THE
CERAMIC DATA

Lauren A. Sullivan, Brett A. Houk, Gregory Zaro, and Lindsey R. Moats

The Terminal Classic in the Three Rivers region is marked by cultural transformation and a large-scale abandonment of the
area. At a number of sites Terminal Classic activity is represented by a large number of sherds and other artifacts placed on elite
residential courtyard floors and the steps to buildings. Different hypotheses proposed to explain these deposits range from
termination rituals with whole vessels smashed into place to feasting events, to middens. Similar deposits were located in Courtyard
100 at La Milpa, and the ceramic analysis demonstrates that, while such deposits often appear to be similar, they may in fact
represent a number of different activities. For the moment, however, the jumbled nature of the Courtyard 100 deposit continues
to hinder reliable separation of Tepa 2 and 3 ceramic assemblages in the area.

Introduction

The Terminal Classic in the Three Rivers region has typically been characterized by a
significant reorganization and transformation, with sites and landscapes that were heavily
utilized in the Late Classic effectively abandoned (Sullivan et al. 2007; 2008). Original
data suggested that La Milpa (Figure 1) was relatively quickly deserted by about AD 850
with some evidence of limited Terminal Classic squatting in the Main Plaza (Hammond
and Tourtellot 2004). Recent excavations, radiocarbon dates, and the analysis of several
dense artifact deposits at Courtyard 100 in the southern portion of the site suggest that
construction of the courtyard began during the Early Classic period, with occupation continuing
through the Late Classic period and well into the Terminal Classic, long after the site was thought
to have been abandoned (Houk and Zaro 2010;
Zaro and Houk 2012).

At a number of sites across the lowlands,
Terminal Classic activity has been represented by large numbers of sherds and other artifacts
placed on elite residential courtyard floors and steps to buildings above the final
construction/occupation phase of a building where one would typically not expect to
encounter a midden (Adams 2004 et al.; Houk
2000; Moats 2012). These types of deposits were first distinguished on the Tikal project in
order to differentiate them from more straightforward middens or burials (Coe 1982)
and have typically been referred to as
problematic deposits" or "special deposits"
(Coe 1982), "occupational debris" (Helmke
2006), and/or "de-facto refuse" (Chase and

Figure 1. Map of La Milpa with the location of Courtyard
100 indicated, after Houk and Zaro (2011:Figure 1).

Chase 2004). These types of deposits are often
located on the centerline of monumental
architecture (Clayton et al. 2005), and different
hypotheses proposed to explain the behavior
behind these deposits include termination rituals
with whole vessels smashed into place
(Guderjan 2004), feasting events (LeCount
1996), primary middens (Culbert 1973; Houk

Copyright © 2013 by the Institute of Archaeology, NICH, Belize.
2000), and/or transposed ritual middens (Clayton et al. 2005; Garber et al. 1998). Similar deposits, referred to by Houk (2011) as surface deposits, were located in Courtyard 100, from Structures 102, 104, and 105, and from the middle of Courtyard 100B, with the Structure 104 deposit being the most extensive and most intensively studied (Figure 2). The ceramic analysis of the four deposits, discussed chronologically below, demonstrates that, while they often appear to be similar, such deposits may in fact represent a number of different activities (Sullivan 2012).

Goals and Methods

The goals of the ceramic analysis were to more completely understand what activities are represented by these types of ceramic assemblages and to better delineate the transition from Tepeu 2 to Tepeu 3 in the regional ceramic sequence. There is a high percentage of ceramic types such as Achote Black, Cayo Unslipped, and Subin Red, but one of the problems in the region is trying to isolate a clear “break” between Late Classic/Tepeu 2 and Terminal Classic/Tepeu 3 (Sullivan et al. 2007). Part of this problem may be due to the fact that Terminal Classic ceramics might represent occupations of earlier (Tepeu 2) structures without the addition of new construction layers to aid in clearer chronological separation (Graham 1986) as well as the continued use of utilitarian types from the Late Classic into the Terminal Classic. Another issue is the virtual absence of typical Terminal Classic ceramic “markers” such as Daylight Orange: Darknight variety, Fine Orange, Plumbate, and other Terminal Classic “finewares” at the majority of sites in the area. In the case of the Structure 104 deposit at Courtyard 100, the Terminal Classic markers occur at different levels and are mixed with more general Late Classic types, so we were not able to refine our chronology as much as originally anticipated (Sullivan 2012).

The ceramics collected were analyzed using the traditional type: variety analysis (Gifford 1976). The ceramics from each lot were sorted into body and rim sherds and then counted. In order to more completely understand what activities this ceramic assemblage represents, efforts were made to refit sherds (rim and body sherds) from all levels of the deposits and to establish the minimum number of vessels present (Sullivan 2012). While both rim and body sherds were counted and placed into types, rim sherds were the primary focus of this analysis and were used to identify a minimum number of vessels (see Chase and Chase 2007; Clayton et al. 2005). To determine the original nature of these deposits, vessel form and possible function (based on rim sherds) were considered, although we do acknowledge that determining function can be problematic in that vessels may be used for multiple tasks (e.g., Rice 1987). The forms were broken down into several groups: small serving vessels, larger serving or food preparation vessels, and larger food storage for preparation vessels (see Clayton et al. 2005).
<table>
<thead>
<tr>
<th>Sample Prov.</th>
<th>Context</th>
<th>Radiocarbon Age (BP)</th>
<th>1 sigma range</th>
<th>2 sigma range</th>
</tr>
</thead>
<tbody>
<tr>
<td>B6-O-2</td>
<td>Str. 105 surface deposit</td>
<td>590 ±15</td>
<td>1318AD (54.9%) 1352AD</td>
<td>1309AD (71.4%) 1361AD</td>
</tr>
<tr>
<td>B6-AC-1</td>
<td>Str. 104 surface deposit</td>
<td>710 ± 15</td>
<td>1275AD (68.2%) 1288AD</td>
<td>1268AD (95.4%) 1294AD</td>
</tr>
<tr>
<td>B6-P-5(1)</td>
<td>Str. 104 surface deposit</td>
<td>1040 ± 40</td>
<td>906AD (3.2%) 911AD</td>
<td>892AD (93.9%) 1043AD</td>
</tr>
<tr>
<td>B6-C-5(2)</td>
<td>Str. 104 surface deposit</td>
<td>1080 ± 40</td>
<td>898AD (17.5%) 920AD</td>
<td>888AD (95.4%) 1022AD</td>
</tr>
<tr>
<td>B6-M-3</td>
<td>Courtyard 100B floor surface</td>
<td>1180 ± 15</td>
<td>827AD (8.5%) 840AD</td>
<td>780AD (4.8%) 792AD</td>
</tr>
<tr>
<td>B6-K-2f</td>
<td>Str. 104 surface deposit</td>
<td>1205 ± 15</td>
<td>779AD (44.2%) 828AD</td>
<td>775AD (96.4%) 882AD</td>
</tr>
<tr>
<td>B6-AE-2b</td>
<td>Str. 104 surface deposit</td>
<td>1210 ± 20</td>
<td>777AD (43.9%) 829AD</td>
<td>724AD (3.6%) 739AD</td>
</tr>
<tr>
<td>B6-AC-7</td>
<td>Str. 104 surface deposit</td>
<td>1220 ± 15</td>
<td>838AD (24.3%) 888AD</td>
<td>770AD (91.8%) 886AD</td>
</tr>
<tr>
<td>B6-AE-5a</td>
<td>Str. 104 surface deposit</td>
<td>1240 ± 20</td>
<td>694AD (44.8%) 748AD</td>
<td>686AD (95.4%) 870AD</td>
</tr>
<tr>
<td>B6-K-11e</td>
<td>Str. 104 surface deposit</td>
<td>1270 ± 20</td>
<td>689AD (40.3%) 723AD</td>
<td>678AD (95.4%) 778AD</td>
</tr>
<tr>
<td>B6-R-9</td>
<td>Str. 102 construction</td>
<td>1310 ± 20</td>
<td>884AD (60.6%) 922AD</td>
<td>658AD (89.9%) 720AD</td>
</tr>
<tr>
<td>B6-R-10</td>
<td>Str. 102 construction</td>
<td>1605 ± 15</td>
<td>417AD (25.1%) 438AD</td>
<td>411AD (95.4%) 534AD</td>
</tr>
<tr>
<td>B6-R-12</td>
<td>Str. 102 construction</td>
<td>1590 ± 60</td>
<td>415AD (68.2%) 540AD</td>
<td>336AD (95.4%) 602AD</td>
</tr>
</tbody>
</table>

Table 1. Results of Radiocarbon Analysis for Samples from Courtyard 100, La Milpa.

The Courtyard 100 Surface Deposits

Structure 102 is the highest mound associated with the courtyard and defines the western boundary. The west side of this structure faces the back of Structure 21, the fifth largest mound at La Milpa. Excavation of Structure 102 identified a construction sequence that began during the Early Classic and continued into the Late Classic (Table 1, Figure 3). A small concentration of sherds was excavated across the courtyard in front of Structure 102 and appears to represent a single deposition event (Moats 2012). This deposit had 21 rims and 562 body sherds and most likely represents an earlier deposition than what is observed on Structure 104. Based on rim sherds, the minimum number of vessels is 14, including two possible reconstrucatable Cayo Unalipped vessels. The ceramics recovered are typical for Late Classic/Tepeu 2 deposits in the area with no distinct Terminal Classic markers (as observed on Structure 104), possibly indicating an earlier depositional date for the scatter of artifacts at the base of Structure 102. This deposit is characterized by a high number of food preparation/food serving vessels, which represent 73.86 percent of the assemblage. It seems highly likely that the vessels were left in
place after whatever activity occurred and are, therefore, de facto refuse (e.g., Chase and Chase 2004).

Structure 105 is a low platform on the southern end of the courtyard with another surface artifact deposit with ceramics, lithics, and a number of obsidian blades scattered across the earthen floor surface on the structure (Moats et al. 2012). The initial 1-x-2-m excavation unit into the deposit yielded 19 rims and 133 body sherds, with a minimum number of 13 vessels based on rim sherds. As with Structure 102, there were no Terminal Classic markers in the deposit. However, unlike Structure 102, there were no reconstructable vessels recovered and no rim sherds from food storage or food preparation vessels. Instead, small serving vessels make up 56.25 percent of the assemblage, and larger serving bowls make up 25.0 percent (18.75 percent of the rims were too small or eroded to identify form). The lack of utilitarian storage vessels in this deposit indicates that it most likely did not result from everyday domestic activities. This deposit may be related to a feasting event, as middens associated with such events typically have a higher ratio of serving vessels as compared to storage vessels (Clayton et al. 2005; Fox 1996).
While smaller, the overall composition of this deposit is similar to that of Special Deposit 1 at Blue Creek, where about 60 percent of the vessels were classified as serving vessels and are thought to be the result of a secondary deposit stemming from “an undiscovered primary midden that accumulated from a feasting ritual held in or near Plaza A at Blue Creek” (Clayton et al. 2005:128).

The largest Courtyard 100 surface deposit, by far, was recovered from Structure 104. Initial excavations here were focused on exposing the final phase of architecture in order to assess structure form, function, and preservation. Excavations along Structure 104 determined it to be a low wall that defines the eastern margin of the courtyard (Moats 2012). A dense artifact deposit was encountered on both sides of the wall, containing broken ceramics, lithics, obsidian, and faunal material. This deposit was also mixed with collapse debris and/or other secondary material. Due to time and space constraints, only a 25 percent sample of pottery (rim and body sherds) from the two largest suboperations was analyzed. Overall, the analyzed sherds included 1,501 rim sherds and 5,754 body sherds. Based on the analysis of the rim sherds, the minimum number of vessels represented is 1,326 with only 10 possible reconstructible vessels (3.7 percent of the rims were too small or too eroded to identify form or vessel size). The types and forms recovered range from large storage vessels like Cayo Unslipped, small bowls like Achote Black, larger serving bowls like Rubber Camp Brown and Garbutt Creek Red bowls/basins, as well as fine orange sherds, which are rare in this area (Figure 4).

Considering the large number of sherds recovered there are very few reconstructable vessels, which suggest that this deposit does not represent some kind of termination ritual or in situ feasting event with whole vessels smashed in place. This pattern is the same for those deposits immediately inside or outside the courtyard as defined by the Structure 104 wall. While partial vessels have been associated with ritual feasting deposits (e.g., Brown 2007), the same archaeological signature is not seen here. The sherds recovered from outside of the structure had ratios of 26.98 percent small serving vessels, 17.59 percent large serving vessels, and 55.43 percent large food preparation/food storage vessels. The forms recovered from the inside of the structure have virtually the same breakdown with 28.48 percent small serving vessels, 18.04 percent large serving vessels, and 53.48 percent large preparation/food storage vessels. The fact that over 50 percent of the rims are from large utilitarian jar types suggests that this deposit may be an elite domestic midden or a transposed elite domestic midden, rather than the result of a transposed ritual midden.

One of the more remarkable things about this deposit is the recovery of clear Terminal Classic markers that are not common in this area (see Sagebiel 2005; Sullivan et al. 2007). The fine orange pieces, which may be local imitations of forms found in other parts of the
Maya area or trade wares, have not been found in non-elite contexts. Fragments of Tumba Black-on-orange and Buyuk Striated body sherd were also recovered. This pattern is also seen at Caracol where Chase and Chase (2007) suggest that elites are using new styles while commoners continue to use older more traditional ceramic types. Radiocarbond dates from various levels of this deposit range from the Late Classic to the Post Classic. The earliest date obtained from a lower level produced a 2-sigma calibrated age range of AD 678–776, while the latest date associated with this deposit came from an upper level and produced a 2-sigma calibrated age range of AD 1309–1409 (Table 1, Figure 3). This supports the idea that the Structure 104 deposit accumulated over time rather than during one specific event, and that it may be the result of multiple visitations during the Terminal Classic and perhaps even extending into the Postclassic (Moats 2012). A similar set of artifacts was found at Chan Chich on the steps of two palace structures. In this case, partial vessel fragments, exotic artifacts, human skeletal material, and a jaguar canine were recovered (Houk 2011). As with Structure 104, Terminal Classic markers were also identified with a partially reconstructable Pabellon Modeled-carved Fine Orange and vessel sherds from an imitation fine orange vessel. The Chan Chich deposit may represent multiple and varied events at the same place, spanning years or even decades (Houk 2000, 2011; Sullivan et al. 2007).

The fourth deposit analyzed was recovered from the middle of Courtyard 100B. Excavations here recovered 35 rims and 385 body sherds with a minimum number of vessels of 33. Rim forms indicate that small serving vessels make up the majority of the assemblage (48.48 percent), with 21.21 percent large serving vessels, 21.21 percent large food preparation/food storage vessels, and 9.1 percent of the rims too small to identify size and/or function. While the Pabellon Modeled Carved (Figure 4) and Unnamed Fine Orange paste sherds recovered date this deposit to the Terminal Classic, the composition of the assemblage is very different from the deposit on Structure 104, where the majority of the assemblage was made up of large food preparation/food storage vessels such as Cayo Unslipped.

Summary and Conclusions

Excavations at La Milpa’s Courtyard 100 clearly demonstrate a long history of cultural activities in this area of La Milpa that continued well after the presumed abandonment of the monumental site core. The contextual analysis of the Courtyard 100 materials also calls for more careful excavation and analysis of these types of deposits in light of the fact that they represent different behaviors, and one interpretation cannot be offered to explain them all (Chase and Chase 2004, 2007; Clayton et al. 2005; Moats 2012). In this one area of La Milpa we see that the dense concentrations of artifacts appear to represent very different activities occurring at different times and further highlight the variable nature and complexity of this time period across the Three Rivers region.

Acknowledgments

The authors would like to thank the National Institute of Culture and History and the Institute of Archaeology for all of their hard work in putting together the annual Belize Archaeology Symposium and the associated edited volumes. We are also grateful to the National Geographic Society (Grant Number 8889-11), Fred Valdez, Jr., and the members of the Programme for Belize Archaeological Project and the La Milpa Core Project.

References

Adams, R. E. W., Hubert R. Robichaux, Fred Valdez, Jr., Brett A. Houk, and Ruth Mathews

Brock Ramsey, Christopher

Brown, M. Kathryn
2007 Ritual Ceramic Use in Early and Middle Preclassic at the Sites of Blackman Eddy and Cahal Pech, Belize. Report submitted to FAMSI.

216
Chase, Arlen F., and Diane Chase

2007 "This is the End:" Archaeological Transitions and the Terminal Classic Period at Caracol, Belize. Research Reports in Belizean Archaeology 4:13–27.

Clayton, Sarah C., W. David Driver, and Laura J. Kosakowsky

Coe, William R.

Culbert, T. Patrick

Fox, John G.

Garber, James F., W. David Driver, Lauren A. Sullivan, and David M. Glassman

Gifford, James C.

Graham, Elizabeth

Guderjan, Thomas H.

Hammond, Norman and Gair Tourtellot, III

Helmke, Christophe G. B.

Houk, Brett A.

Houk, Brett A. and Gregory Zaro

LeCount, Lisa

Moats, Lindsey R.

Moats, Lindsey R., Walter Beckwith and Gregory Zaro
2012 The Excavations at Courtyard 100. In The 2011 Season of the La Milpa Core Project, edited by Brett A. Houk, pp. 39–78. Occasional Papers,
Deciphering a Terminal Classic Surface Artifact Deposit at La Milpa

Number 13. Mesoamerican Archaeological Research Laboratory, The University of Texas at Austin.

Rice, Prudence M.

Sagebiel, Kerry L.

Sullivan, Lauren A.

Sullivan, Lauren A., Brett A. Houk, and Fred Valdez, Jr.

Sullivan, Lauren A., Jon B. Hageman, Brett A. Houk, Paul Hughbanks, and Fred Valdez, Jr.

Zaro, Gregory and Brett A. Houk